Modeling Categorical Random Fields via Linear Bayesian Updating
نویسندگان
چکیده
Abstract: Categorical variables are common in spatial data analysis. Traditional analytical methods for deriving probabilities of class occurrence, such as kriging-family algorithms, have been hindered by the discrete characteristics of categorical fields. This study introduces the theoretical backgrounds of linear Bayesian updating (LBU) approach for spatial classification through expert system. Transition probabilities are interpreted as expert opinions for updating the prior marginal probabilities of categorical response variables. The main objective of this paper is to present the solid theoretical foundations of LBU and provide a categorical random field prediction method which yields relatively higher classification accuracy compared with conventional Markov chain random field (MCRF) approach. A real-world case study has also been carried out to demonstrate the superiority of our method. Since the LBU idea is originated from aggregating expert opinions and not restricted to conditional independent assumption (CIA), it may prove to be reasonably adequate for analyzing complex geospatial data sets, like remote sensing images or area-class maps.
منابع مشابه
A Linear Bayesian Updating Model for Probabilistic Spatial Classification
Abstract: Categorical variables are common in spatial data analysis. Traditional analytical methods for deriving probabilities of class occurrence, such as kriging-family algorithms, have been hindered by the discrete characteristics of categorical fields. To solve the challenge, this study introduces the theoretical backgrounds of the linear Bayesian updating (LBU) model for spatial classifica...
متن کاملBayesian Modeling of Random Effects Covariance Matrix for Generalized Linear Mixed Models
Generalized linear mixed models(GLMMs) are frequently used for the analysis of longitudinal categorical data when the subject-specific effects is of interest. In GLMMs, the structure of the random effects covariance matrix is important for the estimation of fixed effects and to explain subject and time variations. The estimation of the matrix is not simple because of the high dimension and the ...
متن کاملExperimental Study of Masonry Structure Under Impact Loading and Comparing it with Numerical Modeling Results via Finite Element Model Updating
Given the sophisticated nature of the blast phenomenon in relation to structures, it is of significance to accurately investigate the structure behavior under blast loads. Due to its rapid and transient nature, blast loading is one of the most important dynamic loadings on the structures. Since masonry materials are widely used as the partition and bearing walls in the existing and newly-built ...
متن کاملBayesian Optimization in High Dimensions via Random Embeddings
Bayesian optimization techniques have been successfully applied to robotics, planning, sensor placement, recommendation, advertising, intelligent user interfaces and automatic algorithm configuration. Despite these successes, the approach is restricted to problems of moderate dimension, and several workshops on Bayesian optimization have identified its scaling to high dimensions as one of the h...
متن کاملHow to use the catnet package
The R package catnet provides an inference framework for categorical Bayesian networks. Bayesian networks are graphical statistical models that represent causal dependencies between random variables. A Bayesian network has two components: a Directed Acyclic Graph (DAG) with nodes representing random variables and a probability structure specified by conditional distributions, one for each node ...
متن کامل